Каржавин Владимир Андреевич

ВЛИЯНИЕ ТЕРМОЭЛЕКТРИЧЕСКОЙ НЕОДНОРОДНОСТИ НА ТОЧНОСТЬ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ТЕРМОПАРАМИ

Специальность 05.11.01 «Приборы и методы измерения по видам измерений (измерение тепловых величин)»

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Обнинск 2010

Работа выполнена в Государственном научном центре Российско Федерации - Физико-энергетический институт имени А. И. Лейпунского	ой
Научный руководитель: Доктор технических наук, профессор Арнольдов Михаил Николаевич	
Официальные оппоненты: заслуженный метролог РФ, доктор технических наук, профессор Походу Анатолий Иванович заслуженный метролог РФ, кандидат технических наук, Медведев Валерий Афанасьевич	ун
Ведущая организация: Обнинский институт Атомной Энергетики филиал Национально исследовательского ядерного университета «МИФИ» (ИАТЭ НИЯ МИФИ).	
Защита состоится « » 2010 года в часов заседании совета Д 308.004.01 в Федеральном государственном унитарно предприятии "Всероссийский научно-исследовательский инстит метрологии им. Д.И.Менделеева" по адресу 190005, Российская федераци Санкт-Петербург, Московский пр., 19, Зал ученого совета.	ом Зут
С диссертацией можно ознакомиться в библиотеке ФГУП «ВНИИМ им. Д.И. Менделеева»	•
Автореферат разослан « »2010 года	
Ученый секретарь совета Телитченко Г.I кандидат технических наук, доцент	Ί.

Общая характеристика работы

В современной науке, промышленности и энергетике все более строгие требования предъявляются к точности измерения параметров технологических процессов вообще и температуры в частности. Анализ средств измерений технологических процессов современного параметров промышленного проведенный отечественными и зарубежными специалистами, предприятия, показывает, что 40-50% всего объема измерений на предприятии составляют процессы измерения и регулирования температуры рабочей среды, а также основных узлов технологических агрегатов. При большом разнообразии средств измерений в области средних температур значительная часть всех температурных измерений приходится на долю термоэлектрических преобразователей (ТП), чувствительными элементами которых являются термопары. Данный факт связан с рядом их преимуществ по сравнению с остальными средствами измерений, а именно:

- широкий диапазон измеряемых температур;
- удобство монтажа и обслуживания (возможность изгиба и придания любой формы термопаре, расположение термопар на значительном расстоянии от вторичных приборов);
- компактное исполнение;

В связи с этим вопрос точности показаний термопар приобретает все большую актуальность.

Актуальность

Величина термо-эдс, генерируемая неоднородной термопарой, зависит не только от разности температур на ее концах, но и от профиля температуры вдоль термоэлектродов. Термоэлектрическая неоднородность (ТЭН) играет важную роль в контактной термометрии, она может затруднять взаимозаменяемость ТП и их использование в различных условиях эксплуатации, снижает точность результатов измерений. В настоящее время нет модели, позволяющей однозначно определить вид зависимости ТЭН от температуры и её взаимосвязь с изменениями состава и структуры термоэлектродных сплавов. Существует некоторое количество работ с описанием возникновения ТЭН в термопарах типа хромель-алюмель (ХА), также проводились работы по исследованию возникновения ТЭН в платинородийплатиновых термопарах и её влияния на результаты измерения температуры. Практически неизвестны работы по изучению ТЭН в термопарах типа нихросилнисил (НН). В то же время известно, что они обладают лучшей, по сравнению с другими термопарами неблагородных метрологической ИЗ металлов, стабильностью.

Использование результатов калибровки неоднородной термопары, проведенной при одном профиле температуры, при выполнении измерений в других температурных условиях, может привести к значительной ошибке. Калибровка или поверка, осуществляемая без уверенности в однородности термопары, не корректна, вне зависимости от того, с какой точностью она произведена.

В связи с вышесказанным является актуальным изучение влияние ТЭН на точность измерений температуры термопарами, причин её возникновения, при этом наибольший интерес вызывает изучение проявления ТЭН в термопарах типа НН.

Цель

Целью данной работы является изучение процесса возникновения ТЭН в кабельных термопарах типа НН и её влияния на точность измерения температуры. Были поставлены следующие основные задачи:

- определение взаимосвязи величины ТЭН с видом и временем теплового воздействия;
- разработка методик качественного и количественного изучения величины проявления ТЭН;
- разработка методики поверки и калибровки промышленных ТП, результаты которой не искажаются влиянием ТЭН поверяемой ТП, а также разработка эталонных термопар для данного применения;
- анализ источников неопределенности измерений температуры и оценка возможного вклада ТЭН в суммарную неопределенность;
- определение стабильности показаний кабельных ТП нихросил-нисил для подтверждения возможности их использования в качестве эталонного средства измерения температуры третьего разряда.

Научная новизна

Научная новизна работы состоит в том, что в ней впервые:

- подробно исследована зависимость величины проявления ТЭН в термопарах типа НН от вида и времени теплового воздействия;
- проведено исследование возникновения ТЭН в кабельных ТП типа НН с оболочками из различных сплавов (Pyrosil D, Inconel 600, AISI 310);
- установлена взаимосвязь микротвердости термоэлектродов с величиной ТЭН;
- создана математическая модель, описывающая температурное поле, возникающее в термопаре при её погружении в термостатирующую среду.

Практическая ценность:

- разработана и утверждена для применения в РФ методика бездемонтажной поверки ТП в процессе их эксплуатации, на способ проведения поверки получен патент на изобретение;
- разработана конструкция ТП, предусматривающая возможность их бездемонтажной поверки, авторские права на конструкцию защищены патентом на изобретение;
- разработаны и утверждены как средства измерений кабельные эталонные ТП 3-го разряда типа НН;
- показано, что применение бездемонтажной калибровки уменьшает неопределенность измерения температуры с помощью ТП с 4÷12 °С до 2 °С.
- разработана и утверждена для применения в РФ методика поверки ТП длиной менее 250 мм с применением термостатов с флюидизированной средой.

Автор выносит на защиту:

- Методику изучения величины проявления ТЭН и ее распределения вдоль термоэлектродов.
- Результаты исследований кабельных термопар типа НН, взаимосвязь микротвердости термоэлектродов с величиной ТЭН.
- Способ поверки и(или) калибровки ТП в процессе их эксплуатации без демонтажа с объекта.
- Обоснование возможности использования кабельных ТП нихросил-нисил в качестве эталонных средств измерений 3-го разряда.

Внедрение результатов работы

Начато применение комплекса преобразователей 21.XX и КЭТНН на таких промышленных предприятиях, как ФГУП ПО «УралВагонЗавод» им. Ф.Э. Дзержинского, ОАО «Самарский металлургический завод», ОАО «Энергомашспецсталь», ЗАО «Рязанский кирпичный завод», ОАО «Златоустовский металлургический завод».

Апробация работы

По теме диссертации опубликовано 24 работы, в том числе 2 патента на изобретения и один патент на полезную модель. Материалы работы опубликованы в виде 5 статей в реферируемых журналах.

Результаты проведенных исследований были представлены в виде докладов на конференциях: «Температура-2004», «Кузнецы Урала-2005», ІІІ международная научно-практическая конференция «Металлургическая теплотехника: история,

современное состояние, будущее» (2006 г.), «Четвертая Российская национальная конференция по теплообмену (РНКТ-4)» (2006 г.), Школа-семинар молодых ученых и специалистов «Проблемы газодинамики и теплообмена в энергетических установках», под рук. академика РАН А.И. Леонтьева (2007 г.), «Температура-2007», «Теплофизика-2007», IV международная научно-практическая конференция «Печные агрегаты и энергосберегающие технологии в металлургии и машиностроении» (2008 г.), международная конференция «ТЕМРВЕІЛІКЭ 2008».

Структура и объем работы

Диссертация состоит из введения, 5 глав и заключения. Работа изложена на 147 страницах основного текста, содержит 39 таблиц и 95 рисунков, список литературы из 47 наименований.

Основное содержание работы

Введение. Показана актуальность работы, научная новизна и практическая ценность работы, сформулированы цель и задачи диссертационного исследования.

Глава 1. Термоэлектрическая неоднородность материалов.

Представлены исторический обзор развития знаний о термоэлектричестве и литературный обзор современных взглядов на термоэлектрические эффекты, в частности на термоэлектрическую неоднородность (ТЭН).

Из литературных источников известно, что ТЭДС возникает не в спае ТП, а по длине термоэлектродов, на участках с градиентом температуры. На участках с постоянной температурой ТЭДС не возникает. Это демонстрирует формула (1)

$$E_{A-B} = \int_{X(T)}^{X(T+dT)} S_{AB}(X,T) \frac{dT}{dX} dX \quad . \tag{1}$$

Коэффициент Зеебека – одна из физических характеристик любого электропроводящего материала, наиболее чувствительных к его химическому составу и структуре. Вследствие этого различные участки термоэлектродной проволоки могут развивать неодинаковую ТЭДС при равном градиенте температуры, т.е. быть термоэлектрически неоднородными. Неоднородность определяется как отклонение коэффициента Зеебека данного участка от некоторого нормированного значения:

$$\delta S(T, X) = S(T, X) - S_n(T) \quad . \tag{2}$$

Таким образом, для неоднородных термоэлектродов коэффициент Зеебека является функцией не только температуры T, но и координаты по длине X.

Зарождение и развитие ТЭН, её величина зависят от ряда причин, связанных с воздействием внешней среды, особенно при высокой температуре, и вызывающих изменения состава и структуры материала. Среди основных:

- -изменение химического состава термоэлектродов при взаимодействии с изолирующими материалами и окружающей средой за счет избирательного окисления, испарения или связывания в соединения элементов;
 - рекристаллизация, рост зерна;
- -превращения в твердом состоянии (упорядочение, распад твердого раствора);
 - -пластическая деформация и упругие напряжения;
 - -воздействие радиации и электромагнитных полей.

Основные методы искусственного развития термоэлектрической неоднородности (ТЭН) в термопарах это: отжиг, термоциклирование и термоудары. В данной работе исследовалось два последних вида воздействия. В основном применялись термоудары, как режим, наиболее близкий к реальным условиям эксплуатации эталонных ТП при бездемонтажной поверке.

В главе приведен подробный обзор методов исследования ТЭН. Для проведения исследований был выбран метод двух сред (метод однополярного температурного градиента). Данный метод – один из самых простых среди точных методов – осуществляется погружением образца из изотермической среды в изотермическую ванну, которая находится при другой температуре. Он характеризуется наличием всего одной зоны перехода (рисунок 1), и суммарная ТЭДС зависит от ТЭН участка, проходящего в данный момент через эту зону. Обычно используется жидкостная ванна, и образец ориентирован вертикально, однако вертикальное погружение в отрытую жидкую ванну ограничивает длину исследуемого образца и максимальную температуру исследования.

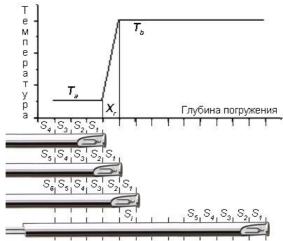
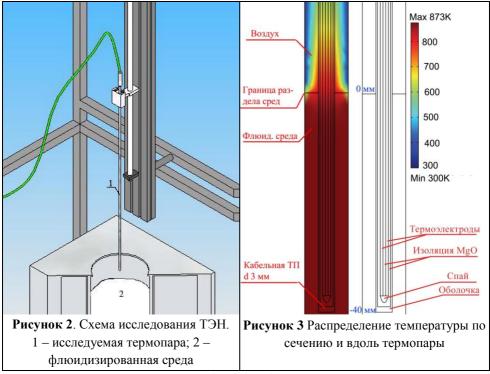
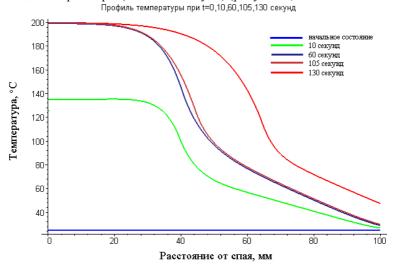



Рисунок 1 Метод однополярного градиента температуры

<u>Глава 2. Экспериментальные методы</u> Изначально в исследовательских работах применялся жидкостный переливной термостат с рабочим веществом – кремнийорганическим маслом, что ограничивает температуру исследования ТЭН уровнем в 200°С. Обычные трубчатые печи не подходят для таких задач ввиду неравномерности температурного поля внутри печи. Поэтому для дальнейших исследований были выбраны термостаты с флюидизированной средой (FB-08, Англия). Рабочий объем термостатов такого типа заполняется мелкодисперсным минеральным порошком. Снизу через специальную пористую пластину подают поток газа под давлением. Давление подбирают таким образом, чтобы частицы порошка поднимались и перемешивались потоком создавая флюидизированную (псевдожидкостную) среду. Термостаты данного типа ранее не применялись в России в научных и метрологических целях, поэтому в ходе диссертационной работы были тщательно исследованы их метрологические характеристики.


Для перемещения термопар был разработан модуль линейных перемещений (МЛП). С помощью шагового двигателя осуществлялось перемещение исследуемой термопары. Двигатель имеет интерфейс управления с компьютера, благодаря чему можно точно задавать скорость и величину перемещений, программировать последовательность перемещений. Управление модулем осуществляется с помощью ПК, по разработанному алгоритму. Точность и воспроизводимость режима

перемещений термопар крайне важны при исследовании проявления ТЭН. Схема установки представлена на рисунке 2.

Для определения минимально допустимой глубины погружения ТП и распределения температуры вдоль ТП при исследовании ТЭН было выполнено математическое моделирование теплового поля, возникающего в ТП при его погружении в термостат. Произведен численный расчет нагрева термопары в поперечном и продольных сечениях (рисунок 3). Расчеты проводились для нескольких уровней температуры.

Проведены расчеты распределения температуры в стационарных условиях и при перемещении термопары. Показана возможность рассмотрения кабельной термопары как бесконечно тонкого стержня при моделировании тепловых процессов. Задачи теплопроводности были решены как аналитически, так и при помощи компьютерных программ численного моделирования.

Математическое моделирование позволило рассчитать тепловое состояние ТП через различные промежутки времени. Было установлено, что примерно через 60 секунд профиль становится квазистационарным и практически не изменяется до начала движения (100 секунд) (рисунок 4). В дальнейшем, после начала увеличении глубины погружения профиль температуры не изменяется по форме, а только смещается вдоль термопары (105 и 130 секунд) (рисунок 4).

Рисунок 4 Профиль температуры термопары через 0, 10, 60, 105, 130 секунд после погружения с среду

Для подтверждения результатов математического моделирования был проведен цикл измерений по выбору оптимального режима исследования проявления ТЭН в термостате с флюидизированной средой. Оптимальным оказался режим перемещения термопар из атмосферы в разогретую среду термостата быстрыми перемещениями (250 мм/мин) по 10 мм с выдержкой 10 секунд на

позиции. Именно такой режим использовался для всех иссладований проявления ТЭН в термопарах типа НН.

В ходе работы подробно было изучено четыре термостата флюидизированной средой модели FB-08 (Techne. Англия). Результаты исследований позволили определить метрологические ИΧ характеристики, отсутствовавшие в паспортах и внести термостат FB-08 в Государственный реестр средств измерений РФ. В таблице 1 представлены полученные метрологические характеристики.

Таблица 1. Некоторые метрологические характеристики FB-08 в диапазоне от 200 $^{\circ}$ C до 600 $^{\circ}$ C

Наименование характеристики	Размерность	Значение
кратковременная стабильность (в течение 8 минут)	°С/мин	от ± 0,02 до ± 0,08
Неоднородность температурного поля в рабочем объеме термостата, обусловленная: - градиентом температуры по горизонтали - градиентом температуры по глубине (от 20 до 350 мм)	°С/см	от \pm 0,02 до \pm 0,08 от \pm 0,01 до \pm 0,04

Одним из практических важных этапов работы стало создание методики поверки термопар длиной менее 250 мм, использующей термостаты с флюидизированной средой FB-08 в качестве средства поверки. Методика была утверждена и зарегистрирована в установленном порядке под номером МИ 3090-2007 и уже заинтересовала ряд лабораторий, аккредитованных на право поверки. На момент утверждения методики в РФ отсутствовали нормативные документы, позволяющие проводить поверку термоэлектрических преобразователей с монтажной длиной менее 250 мм.

<u>Глава</u> 3. Изучение ТЭН. В главе представлены результаты исследований проявления ТЭН в термопарах различных градуировок после термоциклирования (в диапазоне от 400 °C до 1050 °C, длительность одного цикла 8 часов), а также после воздействия термоударов (от 30 °C до 1000 °C, скорость разогрева в первую минуту 700 °C). Особое внимание уделено исследованию термопар градуировки нихросилнисил (НН). Всего в ходе выполнения работы было исследовано более 70 термопар. Приведены результаты исследований развития ТЭН в кабельных термопарах типа S (платинородий 10- платина), сегодня они мало изучены, так как традиционно применяются проволочные термопары данного типа.

Все исследования были разделены на два этапа: предварительные сравнительные исследования и массовые групповые исследования ТП типа НН.

В ходе предварительных испытаний было получено подтверждение предположения о меньшем развитии ТЭН в термопарах типа НН в целом и особенно в кабельных термопарах типа НН (\mathbb{N} 1,2,605,607) интегральной компоновки (материал оболочки таких термопар химически близок к материалам термоэлектродов).

Таблица 2. Проявления ТЭН в ТП после 48 термоциклов

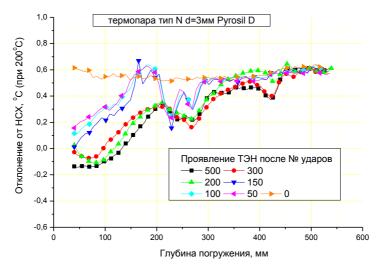

Термопара	Максимальное проявление ТЭН	Термопара	Максимальное проявление ТЭН
ПП № 1	5,3 °C	XA № 1	2,0 °C
ПП № 3	7,7 °C	XA № 2	2,0 °C
HH № 1	0,6 °C	XA № 5741	6,0 °C
HH № 2	1,5 °C		

Таблица 3. Проявления ТЭН в ТП после 500 термоударов (сравнительные испытания)

Температура		Максимальная величина проявления ТЭН, °С				
, °C	HH № 599	HH № 604	HH № 605	HH № 607	XA № 20721	XA № 20723
200	1,7	0,4	0,4	0,3	0,7	0,6
400	3,4	0,9	0,45	0,5	1,2	1,2
600	5	1,0	0,75	0,75	2	2,2

Подробно исследован процесс развития проявления ТЭН с набором числа термоударов (рисунок 5).

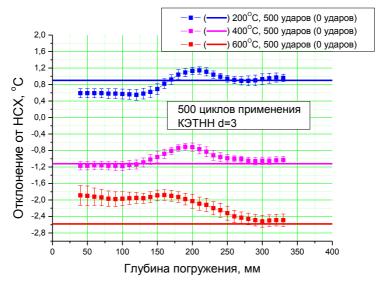
Из представленных данных видно, что уже после первых 50 ударов появляется значительная ТЭН (около 70 % от максимально развитой ТЭН за 500 ударов), и затем ее величина медленно растет до набора 150 ударов (до 75–80 %). Довольно существенный прирост величины ТЭН происходит при количестве термоударов 200 (величина ТЭН 85–95 %). После 200 термоударов существенного увеличения ТЭН не происходит, однако имеет место ее перераспределение по длине термоэлектродов.

Рисунок 5 Проявление ТЭН в зависимости от количества термоударов. Термопара типа N, оболочка Pyrosil D

В ходе массовых испытаний исследовалось более 20 кабельных термопар НН интегральной компоновки диаметром 3 мм, 14 шт. – диаметром 4,5 мм, 4 шт. – диаметром 2 мм, а также проволочные термопары, изготовленные путем извлечения термоэлектродов из термопарного кабеля. До и после 500 термоударов термопары подвергались градуировке в диапазоне от 200°С до 1100, через 100°С и исследованию проявления ТЭН (рисунок 6). на трёх уровнях температуры -200°С, 400°С, 600°С. Сплошными линиями обозначены начальные показания группы термопар. Проявления ТЭН каждой термопары на каждом уровне температур проверялось три раза. Далее устанавливалось среднее значений отклонения от НСХ (групповая статическая характеристика - ГСХ) всех термопар для каждой из глубин погружения и стандартное отклонение среднего значения.

Таблица 4. Результаты групповых исследований кабельных ТП типа HH после 500 термоударов

Толитополито	Максимальное изменение ГСХ, °С				Максимальное изменение ГСХ, °С		
Температура, °С	d=3 мм (10 шт)	d=4,5 мм (10 шт)	d=2 мм (4 шт)	Проволочные			
C			·	ТП (4 шт)			
200	0,4	0,45	0,57	1,2			
400	0,33	1	0,75	1,5			
600	0,62	1,51	0,8	2,2			


По результатам исследований показана высокая стабильность термопар интегральной компоновки, однако интегральная компоновка термопарного кабеля не является 100%-ной гарантией высокой стабильности и надежности термопар (рисунок 7), что связано с качеством термоэлектродных сплавов в состоянии поставки. На данном рисунке приведены проявления ТЭН до и после 500 термоударов двух групп (по 4 шт. в группе) кабельных термопар типа НН диаметром 3 мм интегральной компоновки.

Для использования термопар для высокоточных измерений необходимо тщательно отбирать бухты кабеля и проводить полные испытания на образцахсвидетелях.

Испытания кабельных термопар интегральной компоновки диаметром 2 мм показали, что за 300 термоударов величина ТЭН в данных термопарах уже сравнима с величиной ТЭН после 500 термоударов в термопарах диаметром 3 мм и 4,5 мм.

Величина проявления ТЭН в проволочных термопарах после 500 термоударов в несколько раз превосходит проявления ТЭН в кабельных термопарах диаметром 3 мм (термоэлектроды для проволочных ТП были извлечены из бухты термопарного кабеля диаметром 3 мм и сравнивались по стабильности с кабельными термопарами из той же бухты кабеля). Данные результаты свидетельствуют о том, что защита термоэлектродов термопар от воздействия окружающей среды играет важную роль для достижения высокой стабильности термопар.

Для определения, какие внутренние причины вызывают возникновение ТЭН в термопарах типа НН, были выполнены исследования микроструктуры и химического состава термопар, после того как они подверглись 500 термоударам.

Рисунок 6 Сводный график проявления ТЭН в термопарах d=3 мм

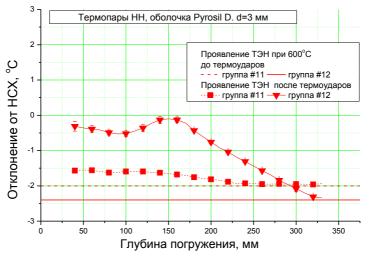


Рисунок 7 Проявления ТЭН образцов из групп 11 и 12

Также было исследовано проявление ТЭН этих термопар при температурах 200 °C, 400 °C, 600 °C. Поскольку определить состояние кристаллической решетки, местонахождение примесных атомов и дислокаций весьма трудно, в качестве параметра, отвечающего за внутреннее строение материала, была выбрана

микротвердость, т.к. из материаловедения известно, что изменение микротвердости всегда связано с изменениями в кристаллической решетки материала.

Анализ каждой термопары проводился в трех поперечных сечениях: в 50 мм от рабочего конца ТП (сечение 1), в 150 мм (сечение 2) и в 600 мм (сечение 3). Всего было исследовано 9 термопар (в том числе 3 проволочных).

Исследование химического состава термоэлектродов в различных сечениях показало, что химический состав термоэлектродов не изменился вследствие воздействия термоударов. Исследования микротвердости проводились методом Виккерса с нагрузкой на индентор 50 г. В таблице 5 представлены усредненные значения микротвердости (HV) в центре термоэлектродов.

Таблица 5. Микротвердость в центре термоэлектродов кабельных ТП

	Микротвердость, HV			
Сечение	d=3 мм	d=4,5 мм	d=3 мм	d=4,5 мм
	Нихросил	Нихросил	Нисил	Нисил
1 (50 мм)	150	159	138	146
2 (150 мм)	157	170	138	153
3 (600 мм)	165	180	145	167

Графики зависимости микротвердости по длине термоэлектродов приведены на рисунке 10.

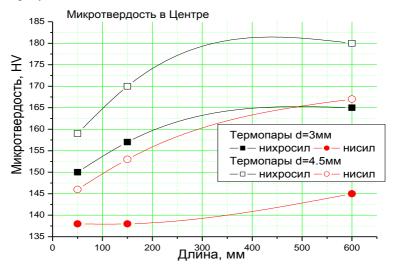


Рисунок 10 Средняя микротвердость в центре в различных сечениях

Полученные данные свидетельствуют о том, что микротвердость и величина проявления ТЭН связаны. При термоударах глубина погружения ТП в печь составляла не более 250 мм, поэтому величина ТЭН для сечения 1 – наибольшая,

для сечения 2 — средняя, а для сечения 3 — как до воздействия термоударов. Микротвердость у термопар из обеих групп падает с увеличением ТЭН (так, в сечении 50 мм микротвердость меньше, чем в сечении 600 мм). Для термопар диаметром 3 мм падение микротвердости по длине термоэлектродов меньше, чем для термопар диаметром 4,5 мм. Данный факт также хорошо согласуется с результатами по ТЭН, так как проявление ТЭН термопар диаметром 3 мм меньше, чем ТЭН термопар диаметром 4,5 мм.

Изменение микротвердости обусловлено как воздействием высокой температуры, так и пластической деформацией и остаточными напряжениями, возникающими при термоударах.

<u>Глава 4. Влияние ТЭН на точность измерений.</u> В данной главе подробно рассмотрен бюджет неопределенности измерений температуры с помощью термопар. Подробно пояснены все 12 составляющих неопределенности измерений.

Таблица 6. Бюджет неопределенности измерения температуру с помощью ТП

Источник неопределенности	Обозначение	Тип и вид распределения неопределенности	Вклад в суммарную неопределенность	
Случайные эффекты при измерении	u_{CKO}	тип A, нормальное распределение	$u_{C\!K\!O}$	
Предел допускаемой основной погрешности регистрирующего прибора	и _{прибора}	тип В, равномерное симметричное распределение	$u_{npu\delta opa} / \sqrt{3}$	
Разрешающая способность прибора	$u_{p.c.}$	тип В, равномерное асимметричное распределение	$u_{p.c.}/2\sqrt{3}$	
Расширенная неопределен-ность индивидуальной статической характеристики ТП	u_{TII}	$u_{T\!\Pi} = u_{H\!C\!X}$ в случае индивидуальной градуировки ТП; $u_{T\!\Pi} = u_{K\!Q}$ в случае поверки ТП на соответствие классу допуска		
Расширенная неопределенность калибровки ТП	u_{UCX}	тип В, нормальное распределение	$u_{HCX}/2$	
Расширенная неопределенность класса допуска ТП	$u_{K\!\!/\!\!\!1}$	тип В, равномерное симметричное распределение	$u_{K\!\!A}/\sqrt{3}$	
Погрешность компенсации температуры опорных спаев	u_{onop}	тип В, равномерное симметричное распределение	$u_{onop}/\sqrt{3}$	
Удлинительные провода	$u_{nposoda}$	тип В, равномерное симметричное распределение	$u_{nposoda}/\sqrt{3}$	

Нестабильность ТП за межповерочный интервал (МПИ)	$u_{\partial p e \check{u} \phi}$	тип В, равномерное симметричное распределение	$u_{\partial p e \check{u} \phi} / \sqrt{3}$		
Неоднородность ТП	$u_{T\ni H}$	тип В, равномерное симметричное распределение	$u_{T\ni H}/\sqrt{3}$		
Нестабильность измеряемой температуры	$u_{{\scriptscriptstyle HECTAF}}$	тип В, равномерное асимметричное распределение	$u_{HECTAB}/2\sqrt{3}$		
Тепловой контакт со средой	$u_{{\it \Pi}{\it E}{\it Y}{\it b}}$	тип В, равномерное симметричное распределение	$u_{IIEYIB}/\sqrt{3}$		
Расширенная неопределен температуры, °С	ность измерения	и	T		

Особое внимание уделено таким составляющим как: термоэлектрическая неоднородность; неопределенность индивидуальной статистической характеристики; дрейф за время между калибровками; влияние компенсационных Приведены (удлинительных) проводов. результаты расчета неопределенности измерений для различных типовых технических и лабораторных схем измерений при 800 °C. Продемонстрирована особая важность правильного учета дрейфа и влияния ТЭН. Приведены результаты испытаний по определению межповерочного интервала для кабельных термопар типа НН и ХА (по 32 штуки для каждого типа). Показано что МПИ дли термопар типа НН может составлять 4÷5 лет, против 1.5÷2 лет для типа XA. Рассчитано, что расширенная неопределенность неблагородных измерения температуры (800°C) T∏ ИЗ индивидуальной градуировкой в промышленных условиях составляет от 5 °C до 12 °C. Расширенная неопределенность измерения температуры ТП типа ПП первого класса при тех же условиях составляет от 1,9 °C до 3,3 °C. Наличие индивидуальной градуировки и применение высокоточных приборов для ТП из неблагородных металлов позволяет достигнуть расширенной неопределенности измерений от 4 °C до 4.8 °C, и данные значения не могут быть улучшены без применения бездемонтажной калибровки термопар.

<u>Глава</u> **5.** Бездемонтажная калибровка и поверка термопар. В этой главе приведены известные до выполнения работы способы бездемонтажной диагностики точности показаний термопар, указаны недостатки этих способов и причины, по которым данные способы не могли быть использованы как методы калибровки и поверки. Подробно описана разработанная конструкции термопар с возможностью бездемонтажной поверки, и сама методика поверки.

Описанная методика поверки и(или) калибровки термоэлектрического преобразователя без его демонтажа с объекта была разработана в ходе выполнения работы над данной диссертацией. Она утверждена и зарегистрирована 12 декабря 2007 года под № 3091-2007 в рамках Государственной системы обеспечения

единства измерений, имеет статус методики периодической поверки термоэлектрических преобразователей наряду с действующей по ГОСТ 8.338-2002. Авторские права на способ поверки, изложенный в методике, защищены патентом на изобретение № 2325622 от 27.05.2008.

Для реализации методики разработана серия кабельных термоэлектрических преобразователей различных типов КТХА (КТНН, КТЖК, КТХК) конструктивных модификации 21.ХХ (21.05, 21.06, 21.07, 21.08 и др.), включенных в государственный реестр средств измерений. Авторские права на конструкцию преобразователей серии 21.ХХ защищены патентом на изобретение № 2299408.

Один из главных вопросов бездемонтажной поверки — это проблема, связанная с выбором эталонного средства измерений. Традиционно в России в качестве эталонных используют платинородий-платиновые термопары в керамической соломке с оголенным рабочим спаем. В условиях проведения поверки непосредственно на термометрируемом объекте работать с такими термопарами затруднительно и дорого, так как незащищенные термоэлектроды быстро загрязняются, а керамическая соломка при погружении в измерительный канал часто ломается.

Главной целью данной работы было определение стабильности показаний кабельных термопар нихросил-нисил для подтверждения возможности их использования в качестве эталонного средства измерения температуры третьего разряда. Приведенные в главе расчеты и анализ ранее приведенных данных свидетельствуют о такой возможности. Результатом выполнения работы стало создание кабельной эталонной термопары 3-го разряда с нихросил-нисиловыми термоэлектродами -КЭТНН. Данная термопара предназначена специально для проведения бездемонтажной поверки и калибровки при различных температурных полях, на различных глубинах погружения в диапазоне температур от 200 °C до 1100 °C.

Результаты расчета расширенной неопределенности измерения температуры термопарами типов НН и ХА, с учетом того, что рабочие ТП регулярно проходят бездемонтажную калибровку, показывают что вполне достижимы значения расширенной неопределенности измерений от 1,9 °C до 2,7 °C. Таким образом, применение бездемонтажной калибровки кабельных ТП из неблагородных металлов снижает неопределенность измерений, проводимых с их помощью от двух до шести раз и делает их точность сопоставимой с точностью платинородийплатиновых термопар типа S и R

Основные Результаты

1. Созданы установки позволяющие с помощью термоциклирования и термоударов провоцировать зарождение и развитие ТЭН в термоэлектродах.

- 2. Разработаны методика и аппаратное обеспечение для изучения проявлений ТЭН.
- 3. Выполнены измерения влияния ТЭН на показания более чем 50 термопар типов НН, XA и ПП, подвергавшимся 48 термоциклам в интервале температур от 400 °C до 1050 °C или 500 термоударам в интервале температур от 30 °C до 1000 °C со скоростью до 700 °C/мин.
- 4. Подробно рассмотрены все факторы влияющие на неопределенность измерений температуры с помощью термопар. Показано что неопределенность измерений, связанная с влиянием ТЭН, может превышать величину максимальных допусков, установленных стандартами для отклонения индивидуальной характеристики ТП от номинальной.
- 5. Впервые исследована динамика проявления ТЭН термопар типа НН в ходе тепловых воздействий. Показано, что для кабельных термопар типа НН интегрального типа влияние ТЭН на результат измерения в течение 500 термоударов не превышает 0,6-1,1 °C на уровне температур 200÷1100 °C, что значительно меньше чем у термопар типа XA.
- 6. Установлена взаимосвязь ТЭН с микротвердостью материала термоэлектродов для кабельных термопар типа НН.
- 7. Подтверждена возможность применения кабельных ТП типа НН в качестве эталонных средств измерений. В Государственный реестр СИ РФ внесены кабельные эталонные ТП типа КЭТНН.
- 8. Разработана и утверждена для применения в РФ методика бездемонтажной поверки ТП (МИ 3091-2007) в процессе их эксплуатации, на способ проведения поверки получен патент на изобретение.
- 9. Создана и запатентована конструкция ТП с чувствительным элементом в виде кабельной термопары, позволяющая проводить его бездемонтажную поверку.
- 10. Установлено, что применение бездемонтажной калибровки уменьшает неопределенность измерения температуры с помощью ТП с $4\div12~^{\circ}\text{C}$ до 2°C .

Основное содержание диссертации изложено в следующих публикациях:

- 1. Белевцев А.В., Каржавин А.В., Каржавин В.А. Теория термоэлектричества и методика периодической поверки рабочих термоэлектрических преобразователей // Тезисы докладов: II Всероссийская конференция «Температура-2004». Обнинск, 2004.- 5 с. (в соавторстве, авторские 2)
- 2. Белевцев А.В., Каржавин А.В., Каржавин В.А., Шевченко А.И. Бездемонтажный способ диагностики статической характеристики термоэлектрического преобразователя // Тезисы докладов: II Всероссийская конференция «Температура-2004». Обнинск, 2004. 5 с. (в соавторстве, авторские 3)
- 3. Достоверность измерения температуры термоэлектрическими преобразователями и методика их периодической поверки // А.В. Белевцев, А.В. Каржавин, В.А. Каржавин / Сб. трудов 1-ой Российской научно-технической

- конференции по кузнечно-штамповочному производству «Кузнецы Урала-2005». Верхняя Салда, ОАО "ВСМПО-АВИСМА", 2005. 10 с. (в соавторстве, авторские 4)
- 4. Белевцев А.В., Каржавин А.В., Каржавин В.А. Периодическая поверка термоэлектрических преобразователей // Компетентность, 2005. № 2. С. 34-38. .- 5 с. (в соавторстве, авторские 2)
- 5. Белевцев А.В., Каржавин А.В., Каржавин В.А., Шевченко А.И. Бездемонтажный способ оценки достоверности показаний термоэлектрического преобразователя // Мир измерений, 2005. № 3. 7 с. (в соавторстве, авторские 4)
- 6. Достоверность измерения температуры термоэлектрическими преобразователями и методика их периодической поверки // А.В. Белевцев, А.В. Каржавин, В.А. Каржавин, М.Н. Арнольдов / Сб. трудов III Международной научно-практической конференции «Металлургическая теплотехника: история, современное состояние, будущее. К столетию со дня рождения М.А. Глинкова». М.: МИСиС, 2006. 6 с. (в соавторстве, авторские 2)
- 7. Термоэлектрическая неоднородность и ее влияние на неопределённость температурных измерений // А.В. Белевцев, А.В. Каржавин, В.А. Каржавин, М.Н. Арнольдов / Труды Четвертой Российской национальной конференции по теплообмену (РНКТ-4). М.: Издательство МЭИ, 2006. 4 с. (в соавторстве, авторские 2)
- 8. Влияние термопар на неопределенность теплофизического эксперимента // В.А. Каржавин // Сб. трудов XVI Школы-семинара молодых ученых и специалистов «Проблемы газодинамики и теплообмена в энергетических установках», под рук. академика РАН А.И. Леонтьева. Санкт-Петербург: СПбГПУ, 2007. 4с.
- 9. Каржавин В.А., Арнольдов М.Н. Повышение точности измерения температуры в ядерных реакторах // Межведомственный семинар «Теплофизика-2007. Тепломассоперенос и свойства жидких металлов». Обнинск, 2007. ФГУП ГНЦ РФ «ФЭИ им. А.И. Лейпунского». 3 с. (в соавторстве, авторские 1.5)
- 10. Каржавин А.В., Каржавин В.А., Богатов В.В., Белевцев А.В. Контроль достоверности показаний термоэлектрического преобразователя без его демонтажа с объекта // Тезисы докладов: III Всероссийская конференция «Температура-2007». Обнинск, 2007. 6 с. (в соавторстве, авторские 2)
- 11. Каржавин В.А., Арнольдов М.Н., Каржавин А.В., Белевцев А.В. О возможности использования кабельных термопар нихросил-нисил в качестве эталонных // III Всероссийская конференция «Температура-2007». Обнинск, 2007. 6 с. (в соавторстве, авторские 3)
- 12. Каржавин В.А., Белевцев А.В. Термостат с флюидизированной средой. Метрологические характеристики и методические возможности // Тезисы докладов: III Всероссийская конференция «Температура-2007». Обнинск, 2007. 8 с. (в соавторстве, авторские 5)
- 13. Арнольдов М.Н., Белевцев А.В., Каржавин В.А., Каржавин А.В. О возможности использования кабельных термопар нихросил-нисил в качестве эталонных //Приборы, 2007. № 7. 5 с. (в соавторстве, авторские 2)
- 14. МПК G01К 7/02, G01К 13/12, G01К 15/00 Устройство для измерения температуры в виде термоэлектрического преобразователя: патент 2299408 Российская Федерация: // Каржавин А.В., Каржавин В.А., Богатов В.В., Белевцев

- А.В.; патентообладатель ООО «ПК «Тесей». № 2006109703/28; заявл. 28.03.2006; опубл. 20.05.2007, Бюл. № 14.
- 15. МПК G01K 15/00, G01K 7/02, G01K 13/12 Способ контроля достоверности показаний термоэлектрического преобразователя в процессе его эксплуатации: патент 2325622 Российская Федерация: /. Каржавин А.В., Каржавин В.А., Богатов В.В., Белевцев А.В.; патентообладатель ООО «ПК «Тесей». № 2007110408/28; заявл. 22.03.2007; опубл. 27.05.2008, Бюл. № 15.
- 16. Повышение точности измерения температуры в ядерных реакторах // В.А. Каржавин, М.Н. Арнольдов ./ Науч.-тех. сб. ВАНТ, серия «Физика ядерных реакторов», вып. 3. М.: РНЦ «Курчатовский институт», 2008. 3 с. (в соавторстве, авторские 1.5)
- 17. Перспективы внедрения бездемонтажной поверки термопар и применения кабельных эталонных термопар КЭТНН // Каржавин В.А., Каржавин А.В. / Сб. трудов IV Международной научно-практической конференции «Печные агрегаты и энергосберегающие технологии в металлургии и машиностроении». М.: МИСиС, 2008. 5 с. (в соавторстве, авторские 2.5)
- 18. Каржавин В.А., Белевцев А.В. Термостат с флюидизированной средой. Метрологические характеристики и методические возможности // Новые промышленные технологии, 2008. № 5. 5 с. (в соавторстве, авторские 3)
- 19. Каржавин В.А. Высокоточные термостаты с флюидизированной средой для реализации температур от −100 до 1100°С //Датчики и системы, 2008. № 10.
- 20. Каржавин В.А., Каржавин А.В. Методика периодической поверки термоэлектрических преобразователей непосредственно на термометрируемом объекте // Главный метролог, 2008. № 5. 5 с. (в соавторстве, авторские 2.5)
- 21. Karzhavin V.A. ¹, Karzhavin A.V. Cycle temperature influences on thermocouples type N // ACTA METROLOGICA SINICA, 2008, vol. 29 №4а 6 с. (в соавторстве, авторские 3)
- 22. Каржавин В.А., Каржавин А.В., Белевцев А.В. Контроль достоверности показаний термоэлектрического преобразователя без его демонтажа с объекта // Новые промышленные технологии, 2009. № 3. 4 с. (в соавторстве, авторские 2)
- 23. Каржавин В.А., Каржавин А.В., Белевцев А.В.; К вопросу о неопределенности измерений температуры термоэлектрическими преобразователями // Главный метролог, 2010. № 1.
- 24. МПК G01К 7/00 H01В 1/00 Преобразователь термоэлектрический (варианты), термопарный кабель для изготовления преобразователя термоэлектрического по первому варианту.// Каржавин А.В., Каржавин В.А.; патентообладатель ООО «ПК «Тесей». № 2009138022/22; заявл. 15.10.2009; опубл. 20.01.2009, Бюл. № 2.